Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.
نویسندگان
چکیده
Together with actin filaments and microtubules, intermediate filaments (IFs) are the basic cytoskeletal components of metazoan cells. Over 80 human diseases have been linked to mutations in various IF proteins to date. However, the filament structure is far from being resolved at the atomic level, which hampers rational understanding of IF pathologies. The elementary building block of all IF proteins is a dimer consisting of an α-helical coiled-coil (CC) "rod" domain flanked by the flexible head and tail domains. Here we present three crystal structures of overlapping human vimentin fragments that comprise the first half of its rod domain. Given the previously solved fragments, a nearly complete atomic structure of the vimentin rod has become available. It consists of three α-helical segments (coils 1A, 1B, and 2) interconnected by linkers (L1 and L12). Most of the CC structure has a left-handed twist with heptad repeats, but both coil 1B and coil 2 also exhibit untwisted, parallel stretches with hendecad repeats. In the crystal structure, linker L1 was found to be α-helical without being involved in the CC formation. The available data allow us to construct an atomic model of the antiparallel tetramer representing the second level of vimentin assembly. Although the presence of the nonhelical head domains is essential for proper tetramer stabilization, the precise alignment of the dimers forming the tetramer appears to depend on the complementarity of their surface charge distribution patterns, while the structural plasticity of linker L1 and coil 1A plays a role in the subsequent IF assembly process.
منابع مشابه
Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein.
The non-alpha-helical N-terminal domain of intermediate filament proteins plays a key role in filament assembly. Previous studies have identified a nonapeptide motif, SSYRRIFGG, in the non-alpha-helical N-terminal domain of vimentin that is required for assembly. This motif is also found in desmin, peripherin and the type IV intermediate filament proteins. GFAP is the only type III intermediate...
متن کاملVimentin in a cold-water fish, the rainbow trout: highly conserved primary structure but unique assembly properties.
We have isolated from a rainbow trout (Oncorhynchus mykiss) spleen cDNA library a clone coding for vimentin. The deduced amino acid sequence reveals a high degree of identity with vimentin from carp (81%), frog (71%), chick and human (73% each). Large stretches in the central alpha-helical rod are identical within all four classes of vertebrates, but in 17 residues spread over the entire rod, t...
متن کاملThe endless story of the glial fibrillary acidic protein.
All intermediate filament proteins consist of an alpha-helical rod domain flanked by non-helical N-terminal head and C-terminal tail domains. The roles of the non-helical domains of various intermediate filament proteins in the assembly and co-assembly of higher-order filamentous structures have been studied by many groups but with quite contradictory results. Type III intermediate filaments ar...
متن کاملSalt - stable interaction of the amino - terminal head region of vimentin with the a - helical rod domain of cytoplasmic intermediate filament proteins and its relevance to protofilament structure and filament formation and stability
Previous studies have shown that the non-a-helical, amino-terminal head region of vimentin is essential for the formation and stability of vimentin intermediate filaments (TFs). In order to specify its target site on companion protein subunits, it was cut off from vimentin at amino acid position 96 with lysine-specific endoproteinase and allowed to react with intact vimentin and other IF protei...
متن کاملInterference in vimentin assembly in vitro by synthetic peptides derived from the vimentin head domain.
The importance of the amino-terminal domain ("head") of type III intermediate filament (IF) proteins in IF assembly has been examined by testing the influence of synthetic peptides representing a highly conserved decameric motif, KSSSYRRIMFGG, located near the amino terminus of vimentin. When added to soluble vimentin subunits this peptide induces, at fourfold molar excess or slightly above, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 34 شماره
صفحات -
تاریخ انتشار 2012